Water Cherenkov Capabilities

Chiaki Yanagisawa
Stony Brook

APS Workshop @ BNL
March 04, 2004
Introduction

- Set the stage for VLB ν_μ appearance

Analysis I

- Comparison between BNL report and my result

Analysis II

- Use of a new likelihood

Analysis III

- With all interactions on

Analysis IV

- Use of off-axis

Conclusions
Introduction

Where we stand:

- $\nu_\mu \rightarrow \nu_\tau$ established
 - ν_μ disappearance experiments: SK, K2K, Soudan2, MACRO
 - $\sin^2 2\theta_{23}$ and $\Delta m^2_{\text{atm}} \sim \Delta m^2_{23}$ measured

- $\nu_e \rightarrow \nu_x$ established
 - ν_e disappearance experiments: Cl, SK, Ga, SNO, KamLAND
 - $\Delta m^2_{12} \ll \Delta m^2_{23} \sim \Delta m^2_{13}$

If $\Delta m^2_{12} \ll \Delta m^2_{23} \sim \Delta m^2_{13} = \Delta m^2_{\text{atm}}$, then

$$P(\nu_\mu \rightarrow \nu_e) \sim \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 (1.27 \Delta m^2_{\text{atm}} / E_\nu) + f(\delta_{CP})$$

Observation of $\nu_\mu \rightarrow \nu_e$ will give us info on $\sin^2 \theta_{13}$ and δ_{CP}
How we do that?

- $\nu_\mu \rightarrow \nu_e$ and $\nu_e + N \rightarrow e + N' + (\text{invisible } \pi s)$

- Look for single electron events

- Major background
 - $\nu_\mu + N \rightarrow \nu_\mu + N' + \pi^0 + (\text{invisible } \pi s)$
 - ν_e contamination in beam (typically 0.7%)

- With a large water Cherenkov detector such as UNO
 - Cheaper for a large volume than other technologies
 - Potentially quite capable of removing background
Introduction

Spectra of on- and off-axis beams

PRD68 (2003) 12002; private communication w/ M.Diwan

![Graph showing spectra of on-axis and off-axis beams](image)

- On-axis beam
- 1° off-axis beam

\[\nu_{\mu}\rightarrow\nu_{\mu} \text{ (GeV)} \]

\[N_{\nu_{\mu}/\text{GeV/m}^2/\text{POT}} \]
Monte Carlo Event Generation

- Atmospheric neutrino events in SK-> BNL superbeam

- All ν interactions available
- SK- I geometry/configuration/PMT coverage
- Standard SK-I analysis package + Special π^0 finder (ntuples)
- Neutrino spectrum reweighted for BNL superbeam using all events
- Total number of events normalized with that expected for BNL using QE events (0.5 Mtons, 5 yr running at 2,540 km)
- Δm^2_{21} = 7.3 \times 10^{-5} \text{eV}^2, \Delta m^2_{31} = 2.5 \times 10^{-3} \text{eV}^2
- \sin^2 2\theta_{ij}(12,23,13) = 0.86/1.0/0.04, \delta_{CP} = +45,+135,-45,-135^\circ

Probability tables from Brett Viren of BNL
Interactions included

- **Mode 1**: QE (CC) *signal*
- **Mode 11-13**: Single π from Δ (CC)
- **Mode 16**: Coherent π^0 (CC)
- **Mode 21**: Multi π ($1.3<W<2.0$ GeV) (CC)
- **Mode 22**: Single η (CC)
- **Mode 23**: Single K (CC)
- **Mode 26**: Deep inelastic (2.0 GeV < W) (CC)
- **Mode 31-34**: Single π from Δ (NC) *background (π^0 only)*
- **Mode 36**: Coherent π^0 (NC) *background*
- **Mode 41**: Multi π ($1.3<W<2.0$ GeV) (NC)
- **Mode 42-43**: Single η (NC)
- **Mode 44-45**: Single K (NC)
- **Mode 46**: Deep inelastic (2.0 GeV < W) (NC)
- **Mode 51-52**: Elastic (NC)
Selection Criteria I

QE for signal, single pi0 for bkg

- Cut 0:
 - Fiducial volume cut (200 cm inside from PMTs)
 - 2 γ s, $E_\gamma > 150$ MeV, $\theta_\gamma > 9^\circ$ \(\rightarrow\) 2 rings

- Cut 1:
 - 1 ring and e- like

- Cut 2:
 - $E_{\text{ring}} > 100$ MeV and no decay electrons

- Cut 3: (\(\pi^0\) finder info used)
 - $80 < m_{\gamma\gamma} < 160$ MeV/c\(^2\) \(\text{invariant mass btwn primary ring and an extra ring found by } \pi^0\text{ finder}\)
 - $E_{\text{vis}} > 500$ MeV
 - $\cos \theta_{\text{ring}} > 0.5$
 - 2 γ s, $E_\gamma > 150$ MeV, $\theta_\gamma > 9^\circ$ \(\rightarrow\) 2 rings

BNL report requirements (PRD68,2003,p12002)

To remove invisible π/μ

BNL report requirements (PRD68,2003,p12002)
π^0 finder

- **π^0** detection efficiency with standard SK software
- **π^0** detection efficiency with **π^0** finder

Always finds an extra ring in a single ring event

m_γγ (MeV/c^2)

- Opening angle measured (deg)
- Efficiency
- True opening angle (deg)

inefficiency overlap
inefficiency weak 2^{nd} ring

Single e-like events from single **π^0** int.

All the single **π^0** int.
Analysis I

π^0 finder

π^0 detection efficiency with standard SK + π^0 finder

All the single π^0 int.

- True opening angle (deg)
- With atmospheric neutrino spectrum
- π^0 mass cut: 1- and 2-ring events
- π^0 mass cut: 2-ring events

With π^0 finder

Without π^0 finder
Detection Efficiencies and Background Rejection I

- $\pi^0 \rightarrow e$ probability

- BNL report

- This study

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>~20%</td>
</tr>
<tr>
<td>2</td>
<td>~50%</td>
</tr>
<tr>
<td>1</td>
<td>~7.5%</td>
</tr>
<tr>
<td>2</td>
<td>~20%</td>
</tr>
</tbody>
</table>

E_{π} (GeV)

- ~7.5% at 1 GeV
- ~20% at 2 GeV

E_{π} (MeV)

- ~20% at 1 GeV
- ~50% at 2 GeV
Detection Efficiencies and Background Rejection I

- ν_e QE efficiency

- BNL report

- This study

Electron eff. vs energy

<table>
<thead>
<tr>
<th>E_e (GeV)</th>
<th>Detection Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>~75% at 1 GeV</td>
<td>~ 0.75</td>
</tr>
<tr>
<td>~95% at 2 GeV</td>
<td>~ 0.95</td>
</tr>
</tbody>
</table>

~50% at 1 GeV
~60% at 2 GeV
Analysis I

BNL report

Before any cut

<table>
<thead>
<tr>
<th></th>
<th>Signal Events</th>
<th>Background Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>no OSC</td>
<td>13,290</td>
<td>4,238</td>
</tr>
<tr>
<td>w/ OSC</td>
<td>6,538</td>
<td>4,238</td>
</tr>
</tbody>
</table>

Normalization

<table>
<thead>
<tr>
<th></th>
<th>Signal Events</th>
<th>Background Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>no OSC</td>
<td>13,260</td>
<td>3,628</td>
</tr>
<tr>
<td>w/ OSC</td>
<td>6,143</td>
<td>3,628</td>
</tr>
</tbody>
</table>

6% less 14% less

This study

Signal 242 events

- All bkg 380
 - (324 from π^0)
 - (56 from ν_e)

Compare with

Signal 303 events

- All bkg 146
 - (76 from π^0)
 - (70 from ν_e)
Number of signal and background events

BNL report

- Signal: 303 events
- All backgrounds: 146
 - 76 from π^0
 - 70 from ν_e

Study by B.Viren

- Signal: 255 events
- All backgrounds: 308
 - 292 from π^0
 - 30 from ν_e

This study

- Signal: 242 events
- All events: signal + background
- All backgrounds: 380
 - 324 from π^0
 - 56 from ν_e
Improve

- Software – More cuts and better pattern recognition
- Some possible variables to be used for additional cuts

Signal: QE
Background: NC π^0

- Fraction of energy $E_2/(E_1+E_2)$
- $\cos\theta$ of 1st ring
- π^0 likelihood
- e-like
- Pid (e/mu)
Define likelihood using fraction of 2^{nd} γ energy, $\cos \theta$ of 1^{st} ring, π^0-likelihood, pid, and π^0 mass. But…

- Drop cuts on π^0 mass, opening angle, and $\cos \theta$
Selection Criteria II

QE for signal, single pi0 for bkg

- **Cut 0:**
 - Fiducial volume cut (200 cm inside from PMTs)

- **Cut 1:**
 - 1 ring and e- like

- **Cut 2:**
 - $E_{\text{ring}} > 100$ MeV and no decay electrons

- **Cut 3:**
 - $E_{\text{rec}} > 500$ MeV New (Evis->Erec)

- $\Delta \text{likelihood} < 0.4$ New

BNL report requirements

To remove invisible π/μ
Signal and Background II

BNL report

Number of signal and background events

This study

<table>
<thead>
<tr>
<th></th>
<th>Signal</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>303</td>
<td>146</td>
</tr>
<tr>
<td>All</td>
<td>76 from π^0</td>
<td>70 from ν_e</td>
</tr>
<tr>
<td></td>
<td>228</td>
<td>233</td>
</tr>
<tr>
<td>CP+45$^\circ$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>180 from π^0</td>
<td>53 from ν_e</td>
</tr>
</tbody>
</table>
Why don’t we turn on all the interactions?
Then what are signals and what are backgrounds?

Why not accept all CC events as signals?
Analysis III

Selection Criteria III

All ν_e CC for signal, all ν_μ and ν_e NC for bkg

all ν_μ CC for bkg

- Cut 0:
 - Fiducial volume cut (200 cm inside from PMTs)

- Cut 1:
 - 1 ring and e- like

- Cut 2:
 - $E_{\text{ring}} > 100$ MeV and no decay electrons

- Cut 3:
 - $E_{\text{rec}} > 500$ MeV

$\Delta\text{likelihood}< \text{to be determined}$

BNL report requirements

To remove invisible π/μ.

Now this is important to Remove invisible charged Pions.
\[\Delta \text{likelihood} = \ln[\text{likelihood}(\text{bkg})] - \ln[\text{likelihood}(\text{sig})] \]

- Define likelihood using fraction of 2nd γ energy, $\cos \theta$ of 1st ring, π^0-likelihood, pid, and π^0 mass. But…

- Drop cuts on π^0 mass, opening angle, and $\cos \theta$
Number of signal and background events

BNL report

- **Signal** 303 events
- **All bkg** 146
 - (76 from π^0)
 - (70 from ν_e

This study

- Out of scale (136 ev)
- Δlikelihood <-0.8

- **Signal** 397 events
- **All bkg** 617
 - (527 from π^0+others)
 - (90 from ν_e)

Comparing

- **CP+45°**

- All backgrounds
Signal and Background III

- All ν_e CC for signal, all ν_μ and ν_e NC for bkg
 - All ν_e CC for bkg

Effect of cut on likelihood

- Δlikelihood < 0.0
- Δlikelihood < -0.4
- Δlikelihood < -0.8

Analysis III

Signal

- 501 events
 - (48% QE events)

All bkg

- 1102
 - (90% NC)
 - (971 from π^0+others)
 - (131 from ν_e)

Signal

- 450 events
 - (48% QE events)

All bkg

- 853
 - (89% NC)
 - (743 from π^0+others)
 - (110 from ν_e)

Signal

- 397 events
 - (48% QE events)

All bkg

- 617
 - (87% NC)
 - (527 from π^0+others)
 - (90 from ν_e)
Signal and Background III

Effect of cut on likelihood

Δ likelihood < -2.0

All ν_e CC for signal, all ν_μ and ν_e NC for bkg

BNL Report

- A tighter cut on likelihood supresses low energy event
- It also modifies energy spectrum very much
- It however improve SN ratio

Signal 303 events
(49% QE events)

All bkgs 253
(86% NC)
(210 from π^0+others)
(43 from ν_e)

Should we use the tightest cut?

Signal 251 events
(49% QE events)

All bkgs 146
(76 from π^0)
(70 from ν_e)
Singnal and Background III

All ν_e CC for signal, all ν_μ and ν_e NC for bkg

• Effect of cut on likelihood and CPV phase

Δlikelihood < 0.0

Δlikelihood < -0.4

All events: signal + bkg

<table>
<thead>
<tr>
<th>CPV δ (deg)</th>
<th>$+45$</th>
<th>$+135$</th>
<th>-45</th>
<th>-135</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>501</td>
<td>660</td>
<td>305</td>
<td>464</td>
</tr>
<tr>
<td>All bkggs</td>
<td>1102</td>
<td>1099</td>
<td>1002</td>
<td>1099</td>
</tr>
<tr>
<td>$\pi^0 +$ others</td>
<td>971</td>
<td>968</td>
<td>971</td>
<td>968</td>
</tr>
<tr>
<td>Beam ν_e</td>
<td>131</td>
<td>131</td>
<td>131</td>
<td>131</td>
</tr>
</tbody>
</table>

Signal

All bkggs

$\pi^0 +$ others

Beam ν_e
Signal and Background III

All ν_e CC for signal, all ν_μ and ν_e NC for bkg

- Effect of cut on likelihood and CPV phase

Δlikelihood< -2.0

All events: signal+bkg

Δlikelihood< -0.8

All bkgs

π^0+others

Beam ν_e

<table>
<thead>
<tr>
<th>CPV δ (deg)</th>
<th>+45</th>
<th>+135</th>
<th>-45</th>
<th>-135</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>397</td>
<td>501</td>
<td>253</td>
<td>357</td>
</tr>
<tr>
<td>All bkgs</td>
<td>617</td>
<td>615</td>
<td>617</td>
<td>615</td>
</tr>
<tr>
<td>π^0+others</td>
<td>527</td>
<td>525</td>
<td>527</td>
<td>525</td>
</tr>
<tr>
<td>Beam ν_e</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>

Erec (MeV)
- **Off-axis beam**

- Define likelihood using fraction of 2nd γ energy, $\cos\theta$ of 1st ring, π^0-likelihood, pid, and π^0 mass as for on-axis beam.

- Drop cuts on π^0 mass, opening angle, and $\cos\theta$

![likelihood(bkg)-likelihood(sig)](image1)

![pi0 mass distribution](image2)

- MeV/c2
Signal and Background IV

All ν_e CC for signal, all ν_μ and ν_e NC for bkg

- Effect of cut on likelihood

No contribution from beam ν_e

No Δlikelihood cut

Signal $\quad 310$ events
All bkg$s \quad 403 + ???$
 (403 from π^0+others)
 (?? from ν_e)

Δlikelihood < 0.0

Signal $\quad 199$ events
All bkg$s \quad 131 + ???$
 (131 from π^0+others)
 (?? from ν_e)
Analysis IV

Signal and Background IV

- **Effect of cut on likelihood**
 - No contribution from beam ν_e included
 - Δlikelihood <-0.4
 - Δlikelihood <-0.8

Graphs

- CP+45°
 - All events: signal + bkg
 - All backgrounds

Event counts

- **Signal** 153 events
- **All bkg** $85 + ???$
 - (85 from π^0 + others)
 - (??? from ν_e)

- **Signal** 96 events
- **All bkg** $46 + ???$
 - (46 from π^0 + others)
 - (??? from ν_e)
Signal and Background III

All ν_e CC for signal, all ν_μ and ν_e NC for bkg

Effect of cut on likelihood and CPV phase

No contribution from beam ν_e

All events: signal + bkg

Δlikelihood < -0.4

<table>
<thead>
<tr>
<th>CPV δ (deg)</th>
<th>+45</th>
<th>+135</th>
<th>-45</th>
<th>-135</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>153</td>
<td>226</td>
<td>62</td>
<td>140</td>
</tr>
<tr>
<td>Bkg π^0+others</td>
<td>85</td>
<td>84</td>
<td>85</td>
<td>84</td>
</tr>
</tbody>
</table>

Erec (MeV)
Conclusions

- Realistic MC simulation study was performed for BNL very long baseline with a water Cherenkov detector
 - Estimates on the signal and background level seem optimistic in the BNL report; This was semi-independently confirmed by Brett Viren of BNL

- It was demonstrated that there is some room to improve SN ratio by reducing the background level while keeping a reasonable signal detection efficiency with current available software
 - Further improvement of algorithm/software is essential and possible
 - A larger detector such as UNO has an advantage over a smaller detector such as SK (See C.K. Jung talk)
Conclusions

- The idea of a very long baseline experiment with a large water Cherenkov detector becomes more realistic in terms of physics
 - Further studies are needed